
Channel Access Client Programming

Andrew Johnson — AES/SSG, Argonne

Includes material from:

Ken Evans, Argonne

Kay Kasemir, ORNL

Matt Newville, CARS UChicago

EPICS Control Systems — USPAS June 2014 — CA Client Programming

2

Task: Write a Channel Access client

■ Many possible approaches and choices of language

■ Assuming that you need more than you can do with
● MEDM/EDM/CaQtDm/EpicsQt display manager

● CSS/Boy with its rules and scripts

■ These are commonly used options
● Shell or Perl script that calls the caget/caput/camonitor programs

● Python program with PyEpics or EPICS Cothread bindings

● Matlab/Octave/Scilab with MCA or LabCA bindings

● State Notation Language (SNL) program with the Sequencer

● Perl program with CA bindings

● C++ program with EPICS Qt bindings

● Java program calling CAJ (pure Java) or JCA (JNI)

● C/C++ program calling CA library

EPICS Control Systems — USPAS June 2014 — CA Client Programming

3

SNL programs speak CA natively

■ This piece of SNL handles all the connection management and data type handling:
● double value;

assign value to "fred";
monitor value;

■ Extend into a basic 'camonitor':
● evflag changed;

sync value changed;

ss monitor_pv
{

state check
{
 when (efTestAndClear(changed))
 {
 printf("Value is now %g\n", value);
 } state check
}

}

EPICS Control Systems — USPAS June 2014 — CA Client Programming

4

Quick Hacks, Simple Scripts

■ In many cases, scripts written in bash/perl/python/php can just invoke the
command-line ‘caget’ and ‘caput’ programs

■ Useful for reading/writing one or two PV values, not for subscribing to value updates

■ Quiz: Why would a loop that continually invokes ‘caget’ or ‘caput’ be bad?

■ CA Client library bindings are available for Perl, Python & PHP
● Perl bindings are included in EPICS Base (not available on MS Windows)

● Several different Python bindings are available

■ Much better to use these for long-running scripts

EPICS Control Systems — USPAS June 2014 — CA Client Programming

5

Simple Script Example

#!/bin/env perl -w

caget: Get the current value of a PV
Argument: PV name
Result: PV value
sub caget {
 my ($pv) = @_;
 open(my $F, "-|", "caget -t $pv") or die "Cannot run 'caget'\n";
 $result = <$F>;
 close $F;
 chomp $result;
 return $result;
}

Do stuff with PVs
my $fred = caget("fred");
my $jane = caget("jane");
my $sum = $fred + $jane;
printf("Sum: %g\n", $sum);

EPICS Control Systems — USPAS June 2014 — CA Client Programming

6

Channel Access for Python

 Two CA client bindings are currently recommended
– PyEpics: Matt Newville, CARS & University of Chicago

– Cothread: Michael Abbott, Diamond

 Differences not huge, evaluate both?
– PyEpics provides a higher-level Device API, wxPython widgets, more extensive

documentation

– Cothread provides a cooperative multi-threading library

 Websites for both bindings are linked from the EPICS Extensions page

 This section of lecture covers PyEpics
– Procedural interface (caget, caput, cainfo, camonitor)

– PV Objects API

EPICS Control Systems — USPAS June 2014 — CA Client Programming

7

Procedural Interface: caget(), caput()

 Easy-to-use interface, similar to the basic
command-line tools

>>> from epics import caget, caput

>>> m1 = caget(’XXX:m1.VAL’)
>>> print m1
-1.2001

>>> caput(’XXX:m1.VAL’, 0)

>>> caput(’XXX:m1.VAL’, 2.30, wait=True)

>>> print caget(’XXX:m1.DIR’)
1

>>> print caget(’XXX:m1.DIR’, as_string=True)
’Pos’

caput(pvname, wait=True) waits
until processing completes. Also
support a timeout option (wait no
longer than specified time)

caget(pvname, as string=True)
returns the String Representation of
value (Enum State Name, formatted
floating point numbers, . . .)

Many other options available that
control exactly what these functions
will do, see documentation

EPICS Control Systems — USPAS June 2014 — CA Client Programming

8

Procedural Interface: cainfo(), camonitor()

 cainfo() also fetches status information and
metadata for the channel:

>>> cainfo(’XXX.m1.VAL’)
== XXX:m1.VAL (double) ==
value = 2.3
char_value = 2.3000
count = 1
units = mm
precision = 4
host = xxx.aps.anl.gov:5064
access = read/write
status = 1
severity = 0
timestamp = 1265996455.417 (2010-Feb-12
11:40:55.417)
upper_ctrl_limit = 200.0
lower_ctrl_limit = -200.0
upper_disp_limit = 200.0
lower_disp_limit = -200.0
upper_alarm_limit = 0.0
lower_alarm_limit = 0.0
upper_warning_limit = 0.0
lower_warning = 0.0
PV is monitored internally
no user callbacks defined.
=============================

 camonitor () monitors the PV, printing a
message for every value change until
camonitor_clear() is called:

>>> camonitor(’DMM:Ch2.VAL’)
DMM:Ch2.VAL 2010-02-12 12:12:59.502945 -183.9741
DMM:Ch2.VAL 2010-02-12 12:13:00.500758 -183.8320
DMM:Ch2.VAL 2010-02-12 12:13:01.501570 -183.9309
DMM:Ch2.VAL 2010-02-12 12:13:02.502382 -183.9285
...

>>> camonitor_clear(’XXX:DMM1Ch2_calc.VAL’)

 Can provide a callback function to change
the formatting or do something other
than print the value each time

 PVs are cached internally, so searches are
not repeated for subsequent calls to
these library routines

EPICS Control Systems — USPAS June 2014 — CA Client Programming

9

PV Objects: Easy to use, rich features

>>> from epics import PV
>>> pv1 = PV(’XXX:m1.VAL’)
>>> print pv1.count, pv1.type
(1, ’double’)

>>> print pv1.get()
-2.3456700000000001

>>> pv1.put(2.0)

>>> pv1.value = 3.0 # = pv1.put(3.0)
>>> pv1.value # = pv1.get()
3.0
>>> print pv.get(as_string=True)
’3.0000’

>>> # user defined callback
>>> def onChange(pvname=None, value=None, **kws):
... fmt = ’New Value for %s value=%s\n’
... print fmt % (pvname, str(value))

>>> # subscribe for changes
>>> pv1.add_callback(onChange)
>>> while True:
... time.sleep(0.001)

 Automatic connection management

 Attributes for many properties
(count, type, host, limits... etc)

 Use get() / put() methods or
the .value attribute

 Use as_string=True argument for
Enum labels or record-selected
floating point display precision

 put() can wait for completion, or
call a function when done

 Callback functions can be given to
the PV() constructor for value and
connection status changes

 Can have multiple value callback
functions

EPICS Control Systems — USPAS June 2014 — CA Client Programming

10

User-Supplied Callbacks for PV Changes

import epics
import time

def onChange(pvname=None, value=None,
 char_value=None, **kws):
 ’’’callback for PV value changes’’’
 print ’PV Changed! ’, pvname, \
 char_value, time.ctime()

mypv = epics.PV(pvname)

Add the callback
mypv.add_callback(onChange)

print ’Now watch for changes for a minute’

t0 = time.time()
while time.time() - t0 < 60.0:
 time.sleep(1.e-3)

mypv.clear_callbacks()
print ’Done.’

 User-defined callback function must
take keyword arguments, e.g.

 pvname Name of PV
 value New value
 char_value String representation of value
 count Element count
 ftype Field type (DBR integer)
 type Python data type
 status CA status, 1 = OK
 precision PV precision
 **kws Many more CTRL values for

limits, units etc.

 User-defined put- and connection-
callback functions must expect similar
arguments

EPICS Control Systems — USPAS June 2014 — CA Client Programming

11

Waveform / Array Data and Long Strings

 If numpy is installed it will be used; if
not get() will return a Python list

>>> p1vals = numpy.linspace(3, 4, 101)

>>> scan_p1 = PV(’XXX:scan1.P1PA’)
>>> scan_p1.put(p1vals)

>>> print scan_p1.get()[:101]
[3. , 3.01, 3.02, ..., 3.99, 3.99, 4.]

 CA only carries strings up to 40 chars
 Arrays of characters must be used for

longer strings. An as_string=True
argument will convert ASCII data

>>> folder = PV(’XXX:directory’)
>>> print folder
<PV ’XXX:directory’, count=21/128,
 type=char, access=read/write>

>>> folder.get()
array([84, 58, 92, 120, 97, 115, 95, 117,
 115, 101, 114, 92, 77, 97, 114, 99,
 104, 50, 48, 49, 48])

>>> folder.get(as_string=True)
’T:\xas user\March2010’

>>> folder.put(’T:\xas user\April2010’)

EPICS Control Systems — USPAS June 2014 — CA Client Programming

12

PyEpics Internal Design Choices

 The module hides many Channel Access details that most users won’t need
– Most of these settings can be changed if necessary

 It also provides a higher-level Device API (not covered here)
 Runs in libCa’s preemptive multi-threading mode, user code never has to call

functions like ca_pend_event() or ca_pend_io()

 Sets EPICS_CA_MAX_ARRAY_BYTES to 16777216 (16Mb) unless already set
 Usually registers internal Connection and Event handlers. User-defined callback

functions are then called by the internal handler
 Event Callbacks are used internally except for large arrays, as defined by

ca.AUTOMONITOR_LENGTH (default = 16K)
 Event subscriptions use mask of (EVENT | LOG | ALARM) by default

EPICS Control Systems — USPAS June 2014 — CA Client Programming

13

Channel Access for Perl, C and C++

 The Channel Access client library comes with EPICS base and is the basis for most of
the other language bindings

– Internally written in C++ but API is pure C

– Main exception: Pure Java library ‘CAJ’

 Documentation:
– EPICS R3.14 Channel Access Reference Manual by Jeff Hill et al.

– CA - Perl 5 interface to EPICS Channel Access by Andrew Johnson

– In <base>/html, or from the EPICS web site

 This section covers
– Fundamental API concepts using Perl examples

– Some brief examples in C

– How to instantiate a template with some example C programs

EPICS Control Systems — USPAS June 2014 — CA Client Programming

14

CA Client APIs for Perl, C and C++

 Why teach the Perl API before C?
– Higher level language than C, no pointers needed

– Learn the main principles and library calls with less code

– Complete Perl programs can fit on one slide

 The Perl 5 API is a thin wrapper around the C library
– Built with Base on most Unix-like workstation platforms (not Windows)

– Provides the same interface model that C code uses

– Unless you’re interfacing to specific libraries or need very high performance, Perl scripts
may be sufficient for most tasks

 Other APIs like Python and Java are less like the C library
– Good for writing client programs in Python/Java, but not for learning the C library

EPICS Control Systems — USPAS June 2014 — CA Client Programming

15

Search and Connect to a PV

use lib '/path/to/base/lib/perl';
use CA;

my $chan = CA->new($ARGV[0]);
CA->pend_io(1);

printf "PV: %s\n", $chan->name;
printf " State: %s\n", $chan->state;
printf " Host: %s\n", $chan->host_name;
my @access = ('no ', '');
printf " Access rights: %sread, %swrite\n",
 $access[$chan->read_access], $access[$chan->write_access];
printf " Data type: %s\n", $chan->field_type;
printf " Element count: %d\n", $chan->element_count;

 This is the basic cainfo program in Perl (without error checking)

EPICS Control Systems — USPAS June 2014 — CA Client Programming

16

Get and Put a PV

use lib '/path/to/base/lib/perl';
use CA;

my $chan = CA->new($ARGV[0]);
CA->pend_io(1);

$chan->get;
CA->pend_io(1);
printf "Old Value: %s\n", $chan->value;

$chan->put($ARGV[1]);
CA->pend_io(1);

$chan->get;
CA->pend_io(1);
printf "New Value: %s\n", $chan->value;

 This is the basic caput program in Perl (without error checking)

EPICS Control Systems — USPAS June 2014 — CA Client Programming

17

Monitor a PV

use lib '/path/to/base/lib/perl';
use CA;

my $chan = CA->new($ARGV[0]);
CA->pend_io(1);

$chan->create_subscription('v', \&val_callback);
CA->pend_event(0);

sub val_callback {
 my ($chan, $status, $data) = @_;
 if (!$status) {
 printf "PV: %s\n", $chan->name;
 printf " Value: %s\n", $data;
 }
}

 This is a basic camonitor program in Perl (without error checking)

EPICS Control Systems — USPAS June 2014 — CA Client Programming

18

Error Checking

 What happens if the PV search fails, e.g. the IOC isn't running, or it's busy and takes
longer than 1 second to reply?

– CA->pend_io(1) times out

– CA library throws a Perl exception (die)

– Program exits after printing:
• ECA_TIMEOUT - User specified timeout on IO operation expired at test.pl line 5.

 We can trap the Perl exception using
– eval {CA->pend_io(1)};

if ($@ =~ m/^ECA_TIMEOUT/) { ... }

 How can we write code that can recover from failed searches and continue doing
useful work?

EPICS Control Systems — USPAS June 2014 — CA Client Programming

19

Event-driven Programming

 First seen when setting up the CA monitor:
– $chan->create_subscription('v', \&callback);

CA->pend_event(0);

– The CA library executes our callback subroutine whenever the server provides a new data
value for this channel

– The CA->pend_event() routine must be running for the library to execute callback
routines

• The Perl CA library is single threaded

• Multi-threaded C programs can avoid this requirement

 Most CA functionality can be event-driven

EPICS Control Systems — USPAS June 2014 — CA Client Programming

20

Event-driven PV Search and Connect

use lib '/path/to/base/lib/perl';
use CA;

my @chans = map {CA->new($_, \&conn_callback)} @ARGV;
CA->pend_event(0);

sub conn_callback {
 my ($chan, $up) = @_;
 printf "PV: %s\n", $chan->name;
 printf " State: %s\n", $chan->state;
 printf " Host: %s\n", $chan->host_name;
 my @access = ('no ', '');
 printf " Access rights: %sread, %swrite\n",
 $access[$chan->read_access], $access[$chan->write_access];
 printf " Data type: %s\n", $chan->field_type;
 printf " Element count: %d\n", $chan->element_count;
}

 The cainfo program using callbacks

EPICS Control Systems — USPAS June 2014 — CA Client Programming

21

Event-driven PV Monitor

use lib '/path/to/base/lib/perl';
use CA;

my @chans = map {CA->new($_, \&conn_cb)} @ARGV;
CA->pend_event(0);

sub conn_cb {
 my ($ch, $up) = @_;
 if ($up && ! $monitor{$ch}) {
 $monitor{$ch} = $ch->create_subscription('v', \&val_cb);
 }
}

sub val_cb {
 my ($ch, $status, $data) = @_;
 if (!$status) {
 printf "PV: %s\n", $ch->name;
 printf " Value: %s\n", $data;
 }
}

 The camonitor program using callbacks

EPICS Control Systems — USPAS June 2014 — CA Client Programming

22

Data Type Requests

 Most data I/O routines handle data type automatically
– $chan->get fetches one element in the channel’s native type

• Value is returned by $chan->value

• Arrays are not supported, no type request possible

– $chan->get_callback(SUB) fetches all elements in the channel’s native data type
• Optional TYPE and COUNT arguments to override

– $chan->create_subscription(MASK, SUB) requests all elements in the channel’s
native type

• Optional TYPE and COUNT arguments to override

– $chan->put(VALUE) puts values in the channel’s native type
• VALUE may be a scalar or an array

– $chan->put_callback(SUB, VALUE) puts values in the channel’s native data type
• VALUE may be a scalar or an array

EPICS Control Systems — USPAS June 2014 — CA Client Programming

23

Specifying Data Types

 The TYPE argument is a string naming the desired DBR_xxx type
– See the CA Reference Manual for a list

 The COUNT argument is the integer number of elements

 If you request an array, the callback subroutine’s $data argument becomes an array
reference

 If you request a composite type, the callback subroutine’s $data argument
becomes a hash reference

– The hash elements are different according to the type you request

– See the Perl Library documentation for details

EPICS Control Systems — USPAS June 2014 — CA Client Programming

24

Simple Channel Access calls from C

 Main header file
– #include <cadef.h>

– This also includes db_access.h, caerr.h and caeventmask.h

 Channels are referred to using as a chid, a pointer to an opaque structure
– chid fred;

 Connect to a channel
– int status = ca_create_channel("fred", NULL, NULL, 0, &fred);

SEVCHK(status, "Create channel failed");
status = ca_pend_io(1.0);
SEVCHK(status, "Channel connection failed")

 The SEVCHK(status, text) macro is useful for simple programs
– Aborts with an error message on bad status

EPICS Control Systems — USPAS June 2014 — CA Client Programming

25

What’s in a chid?

 We can get channel information from a connected chid
– const char *ca_state_to_text[4] = {"Never connected",

 "Not connected", "Connected", "Closed"};

printf("PV: %s\n", ca_name(fred));
printf("State: %s\n", ca_state_to_text[ca_state(fred)]);
printf("Host: %s\n", ca_host_name(fred));
printf("Read: %s\n", ca_read_access(fred) ? "Y" : "N");
printf("Write: %s\n", ca_write_access(fred) ? "Y" : "N");
printf("Type: %s\n", dbr_type_to_text(ca_field_type(fred)));
printf("Count: %s\n", ca_element_count(fred));

 Tidy up after we’re finished with fred
– SEVCHK(ca_clear_channel(fred), "Clear channel failed");

EPICS Control Systems — USPAS June 2014 — CA Client Programming

26

Writing to a PV

 Assuming the chid fred is already/still connected
– SEVCHK(ca_put(DBR_STRING, fred, "10"), "Put failed");

ca_flush_io();

 If fred’s PV can hold an array of doubles
– dbr_double_t data[] = {1.0, 2.0, 3.0, 4.0, 5.0};

SEVCHK(ca_array_put(DBR_DOUBLE, 5, fred, data), "Put failed");
ca_flush_io();

 What other data types are available?
– See the db_access.h file in Base/include

EPICS Control Systems — USPAS June 2014 — CA Client Programming

27

Reading from a PV

 Still assuming fred is connected
– struct dbr_time_double val;

const char * severity_to_text[4] = {
 "No alarm", "Minor", "Major", "Invalid"};

SEVCHK(ca_get(DBR_TIME_DOUBLE, fred, &val), "Get failed");
SEVCHK(ca_pend_io(1.0), "I/O failed");
printf("PV: %s\n", ca_name(fred));
printf("value: %g\n", val.value);
printf("severity: %s\n", severity_to_text[val.severity]);
printf("status: %hd\n", val.status);

EPICS Control Systems — USPAS June 2014 — CA Client Programming

28

Base caClient template

 EPICS Base Includes a makeBaseApp.pl template that builds two basic CA client
programs written in C:

– Run this
makeBaseApp.pl -t caClient cacApp
make

– Result
bin/linux-x86/caExample <some PV>
bin/linux-x86/caMonitor <file with PV list>

– Then read the sources, compare with the reference manual, and edit/extend to suit your
needs

EPICS Control Systems — USPAS June 2014 — CA Client Programming

29

CaClient's caExample.c

 Minimal CA client program
 Fixed timeout, waits until data arrives
 Requests everything as ‘DBR_DOUBLE’

– … which results in values of type ‘double’

– See db_access.h header file for all the DBR_… constants and the resulting C types and
structures

– In addition to the basic DBR_type requests, it is possible to request packaged attributes
like DBR_CTRL_type to get { value, units, limits, …} in one request

EPICS Control Systems — USPAS June 2014 — CA Client Programming

30

Excerpt from db_access.h

/* values returned for each field type
 …
 * DBR_DOUBLE returns a double precision floating point number
 …
 * DBR_CTRL_DOUBLE returns a control double structure (dbr_ctrl_double)
 */

…

/* structure for a control double field */
struct dbr_ctrl_double{
 dbr_short_t status; /* status of value */
 dbr_short_t severity; /* severity of alarm */
 dbr_short_t precision; /* number of decimal places */
 dbr_short_t RISC_pad0; /* RISC alignment */
 char units[MAX_UNITS_SIZE]; /* units of value */
 dbr_double_t upper_disp_limit; /* upper limit of graph */
 dbr_double_t lower_disp_limit; /* lower limit of graph */
 dbr_double_t upper_alarm_limit;
 dbr_double_t upper_warning_limit;
 dbr_double_t lower_warning_limit;
 dbr_double_t lower_alarm_limit;
 dbr_double_t upper_ctrl_limit; /* upper control limit */
 dbr_double_t lower_ctrl_limit; /* lower control limit */
 dbr_double_t value; /* current value */
};

EPICS Control Systems — USPAS June 2014 — CA Client Programming

31

caClient's caMonitor.c

 Better CA client program
– Registers callbacks to get notified when connected or disconnected

– Subscribes to value updates instead of waiting

– … but still uses one data type (DBR_STRING) for everything

EPICS Control Systems — USPAS June 2014 — CA Client Programming

32

Java

■ There are 2 CA implementations for Java: JCA using JNI, or CAJ in pure Java
● Only difference is the initialization, both provide the same API

● Usage is similar to the Perl interface, object-oriented “real programming” as opposed to
Matlab, but in the more forgiving Java VM

■ A Java CA example can be found at
● http://ics-web.sns.ornl.gov/kasemir/train_2006/4_2_Java_CA.tgz

http://ics-web.sns.ornl.gov/kasemir/train_2006/4_2_Java_CA.tgz

EPICS Control Systems — USPAS June 2014 — CA Client Programming

33

Ideal CA client?

■ Register and use callbacks for everything
● Event-driven programming; polling loops or fixed time outs

■ On connection, check the channel’s native type
● Limit the data type conversion burden on the IOC

■ Request the matching DBR_CTRL_type once
● this gets the full channel detail (units, limits, …)

■ Then subscribe to DBR_TIME_type for time+status+value updates
● Now we always stay informed, yet limit the network traffic

● Only subscribe once at first connection; the CA library automatically re-activates
subscriptions after a disconnect/reconnect

■ This is what CSS, EDM, ALH etc. do
● Quirk: Most don't learn about run-time changes of limits, units, etc.

□ Recent versions of CA support DBE_PROPERTY monitor event type

□ This will solve that issue, once the programs and gateway use it

	Slide 1
	Slide 2
	Side Note: SNL just to get CAC help
	Quick Hacks, Scripts
	Perl Example
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Channel Access
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	makeBaseApp.pl
	makeBaseApp's caExample.c
	Excerpt from db_access.h
	makeBaseApp's caMonitor.c
	Java
	Ideal CA client?

